(0) Obligation:

Clauses:

perm([], []).
perm(Xs, .(X, Ys)) :- ','(app(X1s, .(X, X2s), Xs), ','(app(X1s, X2s, Zs), perm(Zs, Ys))).
app([], X, X).
app(.(X, Xs), Ys, .(X, Zs)) :- app(Xs, Ys, Zs).

Query: perm(g,a)

(1) PrologToDTProblemTransformerProof (SOUND transformation)

Built DT problem from termination graph DT10.

(2) Obligation:

Triples:

appC(.(X1, X2), X3, X4, .(X1, X5)) :- appC(X2, X3, X4, X5).
appE(.(X1, X2), X3, .(X1, X4)) :- appE(X2, X3, X4).
permA(.(X1, X2), .(X1, X3)) :- ','(appcB(X2, X4), permA(X4, X3)).
permA(.(X1, X2), .(X3, X4)) :- appC(X5, X3, X6, X2).
permA(.(X1, X2), .(X3, X4)) :- ','(appcC(X5, X3, X6, X2), appE(X5, X6, X7)).
permA(.(X1, X2), .(X3, X4)) :- ','(appcC(X5, X3, X6, X2), ','(appcD(X1, X5, X6, X7), permA(X7, X4))).

Clauses:

permcA([], []).
permcA(.(X1, X2), .(X1, X3)) :- ','(appcB(X2, X4), permcA(X4, X3)).
permcA(.(X1, X2), .(X3, X4)) :- ','(appcC(X5, X3, X6, X2), ','(appcD(X1, X5, X6, X7), permcA(X7, X4))).
appcC([], X1, X2, .(X1, X2)).
appcC(.(X1, X2), X3, X4, .(X1, X5)) :- appcC(X2, X3, X4, X5).
appcE([], X1, X1).
appcE(.(X1, X2), X3, .(X1, X4)) :- appcE(X2, X3, X4).
appcB(X1, X1).
appcD(X1, X2, X3, .(X1, X4)) :- appcE(X2, X3, X4).

Afs:

permA(x1, x2)  =  permA(x1)

(3) TriplesToPiDPProof (SOUND transformation)

We use the technique of [DT09]. With regard to the inferred argument filtering the predicates were used in the following modes:
permA_in: (b,f)
appC_in: (f,f,f,b)
appcC_in: (f,f,f,b)
appE_in: (b,b,f)
appcD_in: (b,b,b,f)
appcE_in: (b,b,f)
Transforming TRIPLES into the following Term Rewriting System:
Pi DP problem:
The TRS P consists of the following rules:

PERMA_IN_GA(.(X1, X2), .(X1, X3)) → U3_GA(X1, X2, X3, appcB_in_ga(X2, X4))
U3_GA(X1, X2, X3, appcB_out_ga(X2, X4)) → U4_GA(X1, X2, X3, permA_in_ga(X4, X3))
U3_GA(X1, X2, X3, appcB_out_ga(X2, X4)) → PERMA_IN_GA(X4, X3)
PERMA_IN_GA(.(X1, X2), .(X3, X4)) → U5_GA(X1, X2, X3, X4, appC_in_aaag(X5, X3, X6, X2))
PERMA_IN_GA(.(X1, X2), .(X3, X4)) → APPC_IN_AAAG(X5, X3, X6, X2)
APPC_IN_AAAG(.(X1, X2), X3, X4, .(X1, X5)) → U1_AAAG(X1, X2, X3, X4, X5, appC_in_aaag(X2, X3, X4, X5))
APPC_IN_AAAG(.(X1, X2), X3, X4, .(X1, X5)) → APPC_IN_AAAG(X2, X3, X4, X5)
PERMA_IN_GA(.(X1, X2), .(X3, X4)) → U6_GA(X1, X2, X3, X4, appcC_in_aaag(X5, X3, X6, X2))
U6_GA(X1, X2, X3, X4, appcC_out_aaag(X5, X3, X6, X2)) → U7_GA(X1, X2, X3, X4, appE_in_gga(X5, X6, X7))
U6_GA(X1, X2, X3, X4, appcC_out_aaag(X5, X3, X6, X2)) → APPE_IN_GGA(X5, X6, X7)
APPE_IN_GGA(.(X1, X2), X3, .(X1, X4)) → U2_GGA(X1, X2, X3, X4, appE_in_gga(X2, X3, X4))
APPE_IN_GGA(.(X1, X2), X3, .(X1, X4)) → APPE_IN_GGA(X2, X3, X4)
U6_GA(X1, X2, X3, X4, appcC_out_aaag(X5, X3, X6, X2)) → U8_GA(X1, X2, X3, X4, appcD_in_ggga(X1, X5, X6, X7))
U8_GA(X1, X2, X3, X4, appcD_out_ggga(X1, X5, X6, X7)) → U9_GA(X1, X2, X3, X4, permA_in_ga(X7, X4))
U8_GA(X1, X2, X3, X4, appcD_out_ggga(X1, X5, X6, X7)) → PERMA_IN_GA(X7, X4)

The TRS R consists of the following rules:

appcB_in_ga(X1, X1) → appcB_out_ga(X1, X1)
appcC_in_aaag([], X1, X2, .(X1, X2)) → appcC_out_aaag([], X1, X2, .(X1, X2))
appcC_in_aaag(.(X1, X2), X3, X4, .(X1, X5)) → U16_aaag(X1, X2, X3, X4, X5, appcC_in_aaag(X2, X3, X4, X5))
U16_aaag(X1, X2, X3, X4, X5, appcC_out_aaag(X2, X3, X4, X5)) → appcC_out_aaag(.(X1, X2), X3, X4, .(X1, X5))
appcD_in_ggga(X1, X2, X3, .(X1, X4)) → U18_ggga(X1, X2, X3, X4, appcE_in_gga(X2, X3, X4))
appcE_in_gga([], X1, X1) → appcE_out_gga([], X1, X1)
appcE_in_gga(.(X1, X2), X3, .(X1, X4)) → U17_gga(X1, X2, X3, X4, appcE_in_gga(X2, X3, X4))
U17_gga(X1, X2, X3, X4, appcE_out_gga(X2, X3, X4)) → appcE_out_gga(.(X1, X2), X3, .(X1, X4))
U18_ggga(X1, X2, X3, X4, appcE_out_gga(X2, X3, X4)) → appcD_out_ggga(X1, X2, X3, .(X1, X4))

The argument filtering Pi contains the following mapping:
permA_in_ga(x1, x2)  =  permA_in_ga(x1)
.(x1, x2)  =  .(x1, x2)
appcB_in_ga(x1, x2)  =  appcB_in_ga(x1)
appcB_out_ga(x1, x2)  =  appcB_out_ga(x1, x2)
appC_in_aaag(x1, x2, x3, x4)  =  appC_in_aaag(x4)
appcC_in_aaag(x1, x2, x3, x4)  =  appcC_in_aaag(x4)
appcC_out_aaag(x1, x2, x3, x4)  =  appcC_out_aaag(x1, x2, x3, x4)
U16_aaag(x1, x2, x3, x4, x5, x6)  =  U16_aaag(x1, x5, x6)
appE_in_gga(x1, x2, x3)  =  appE_in_gga(x1, x2)
appcD_in_ggga(x1, x2, x3, x4)  =  appcD_in_ggga(x1, x2, x3)
U18_ggga(x1, x2, x3, x4, x5)  =  U18_ggga(x1, x2, x3, x5)
appcE_in_gga(x1, x2, x3)  =  appcE_in_gga(x1, x2)
[]  =  []
appcE_out_gga(x1, x2, x3)  =  appcE_out_gga(x1, x2, x3)
U17_gga(x1, x2, x3, x4, x5)  =  U17_gga(x1, x2, x3, x5)
appcD_out_ggga(x1, x2, x3, x4)  =  appcD_out_ggga(x1, x2, x3, x4)
PERMA_IN_GA(x1, x2)  =  PERMA_IN_GA(x1)
U3_GA(x1, x2, x3, x4)  =  U3_GA(x1, x2, x4)
U4_GA(x1, x2, x3, x4)  =  U4_GA(x1, x2, x4)
U5_GA(x1, x2, x3, x4, x5)  =  U5_GA(x1, x2, x5)
APPC_IN_AAAG(x1, x2, x3, x4)  =  APPC_IN_AAAG(x4)
U1_AAAG(x1, x2, x3, x4, x5, x6)  =  U1_AAAG(x1, x5, x6)
U6_GA(x1, x2, x3, x4, x5)  =  U6_GA(x1, x2, x5)
U7_GA(x1, x2, x3, x4, x5)  =  U7_GA(x1, x2, x5)
APPE_IN_GGA(x1, x2, x3)  =  APPE_IN_GGA(x1, x2)
U2_GGA(x1, x2, x3, x4, x5)  =  U2_GGA(x1, x2, x3, x5)
U8_GA(x1, x2, x3, x4, x5)  =  U8_GA(x1, x2, x5)
U9_GA(x1, x2, x3, x4, x5)  =  U9_GA(x1, x2, x5)

We have to consider all (P,R,Pi)-chains

Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

PERMA_IN_GA(.(X1, X2), .(X1, X3)) → U3_GA(X1, X2, X3, appcB_in_ga(X2, X4))
U3_GA(X1, X2, X3, appcB_out_ga(X2, X4)) → U4_GA(X1, X2, X3, permA_in_ga(X4, X3))
U3_GA(X1, X2, X3, appcB_out_ga(X2, X4)) → PERMA_IN_GA(X4, X3)
PERMA_IN_GA(.(X1, X2), .(X3, X4)) → U5_GA(X1, X2, X3, X4, appC_in_aaag(X5, X3, X6, X2))
PERMA_IN_GA(.(X1, X2), .(X3, X4)) → APPC_IN_AAAG(X5, X3, X6, X2)
APPC_IN_AAAG(.(X1, X2), X3, X4, .(X1, X5)) → U1_AAAG(X1, X2, X3, X4, X5, appC_in_aaag(X2, X3, X4, X5))
APPC_IN_AAAG(.(X1, X2), X3, X4, .(X1, X5)) → APPC_IN_AAAG(X2, X3, X4, X5)
PERMA_IN_GA(.(X1, X2), .(X3, X4)) → U6_GA(X1, X2, X3, X4, appcC_in_aaag(X5, X3, X6, X2))
U6_GA(X1, X2, X3, X4, appcC_out_aaag(X5, X3, X6, X2)) → U7_GA(X1, X2, X3, X4, appE_in_gga(X5, X6, X7))
U6_GA(X1, X2, X3, X4, appcC_out_aaag(X5, X3, X6, X2)) → APPE_IN_GGA(X5, X6, X7)
APPE_IN_GGA(.(X1, X2), X3, .(X1, X4)) → U2_GGA(X1, X2, X3, X4, appE_in_gga(X2, X3, X4))
APPE_IN_GGA(.(X1, X2), X3, .(X1, X4)) → APPE_IN_GGA(X2, X3, X4)
U6_GA(X1, X2, X3, X4, appcC_out_aaag(X5, X3, X6, X2)) → U8_GA(X1, X2, X3, X4, appcD_in_ggga(X1, X5, X6, X7))
U8_GA(X1, X2, X3, X4, appcD_out_ggga(X1, X5, X6, X7)) → U9_GA(X1, X2, X3, X4, permA_in_ga(X7, X4))
U8_GA(X1, X2, X3, X4, appcD_out_ggga(X1, X5, X6, X7)) → PERMA_IN_GA(X7, X4)

The TRS R consists of the following rules:

appcB_in_ga(X1, X1) → appcB_out_ga(X1, X1)
appcC_in_aaag([], X1, X2, .(X1, X2)) → appcC_out_aaag([], X1, X2, .(X1, X2))
appcC_in_aaag(.(X1, X2), X3, X4, .(X1, X5)) → U16_aaag(X1, X2, X3, X4, X5, appcC_in_aaag(X2, X3, X4, X5))
U16_aaag(X1, X2, X3, X4, X5, appcC_out_aaag(X2, X3, X4, X5)) → appcC_out_aaag(.(X1, X2), X3, X4, .(X1, X5))
appcD_in_ggga(X1, X2, X3, .(X1, X4)) → U18_ggga(X1, X2, X3, X4, appcE_in_gga(X2, X3, X4))
appcE_in_gga([], X1, X1) → appcE_out_gga([], X1, X1)
appcE_in_gga(.(X1, X2), X3, .(X1, X4)) → U17_gga(X1, X2, X3, X4, appcE_in_gga(X2, X3, X4))
U17_gga(X1, X2, X3, X4, appcE_out_gga(X2, X3, X4)) → appcE_out_gga(.(X1, X2), X3, .(X1, X4))
U18_ggga(X1, X2, X3, X4, appcE_out_gga(X2, X3, X4)) → appcD_out_ggga(X1, X2, X3, .(X1, X4))

The argument filtering Pi contains the following mapping:
permA_in_ga(x1, x2)  =  permA_in_ga(x1)
.(x1, x2)  =  .(x1, x2)
appcB_in_ga(x1, x2)  =  appcB_in_ga(x1)
appcB_out_ga(x1, x2)  =  appcB_out_ga(x1, x2)
appC_in_aaag(x1, x2, x3, x4)  =  appC_in_aaag(x4)
appcC_in_aaag(x1, x2, x3, x4)  =  appcC_in_aaag(x4)
appcC_out_aaag(x1, x2, x3, x4)  =  appcC_out_aaag(x1, x2, x3, x4)
U16_aaag(x1, x2, x3, x4, x5, x6)  =  U16_aaag(x1, x5, x6)
appE_in_gga(x1, x2, x3)  =  appE_in_gga(x1, x2)
appcD_in_ggga(x1, x2, x3, x4)  =  appcD_in_ggga(x1, x2, x3)
U18_ggga(x1, x2, x3, x4, x5)  =  U18_ggga(x1, x2, x3, x5)
appcE_in_gga(x1, x2, x3)  =  appcE_in_gga(x1, x2)
[]  =  []
appcE_out_gga(x1, x2, x3)  =  appcE_out_gga(x1, x2, x3)
U17_gga(x1, x2, x3, x4, x5)  =  U17_gga(x1, x2, x3, x5)
appcD_out_ggga(x1, x2, x3, x4)  =  appcD_out_ggga(x1, x2, x3, x4)
PERMA_IN_GA(x1, x2)  =  PERMA_IN_GA(x1)
U3_GA(x1, x2, x3, x4)  =  U3_GA(x1, x2, x4)
U4_GA(x1, x2, x3, x4)  =  U4_GA(x1, x2, x4)
U5_GA(x1, x2, x3, x4, x5)  =  U5_GA(x1, x2, x5)
APPC_IN_AAAG(x1, x2, x3, x4)  =  APPC_IN_AAAG(x4)
U1_AAAG(x1, x2, x3, x4, x5, x6)  =  U1_AAAG(x1, x5, x6)
U6_GA(x1, x2, x3, x4, x5)  =  U6_GA(x1, x2, x5)
U7_GA(x1, x2, x3, x4, x5)  =  U7_GA(x1, x2, x5)
APPE_IN_GGA(x1, x2, x3)  =  APPE_IN_GGA(x1, x2)
U2_GGA(x1, x2, x3, x4, x5)  =  U2_GGA(x1, x2, x3, x5)
U8_GA(x1, x2, x3, x4, x5)  =  U8_GA(x1, x2, x5)
U9_GA(x1, x2, x3, x4, x5)  =  U9_GA(x1, x2, x5)

We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 3 SCCs with 8 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPE_IN_GGA(.(X1, X2), X3, .(X1, X4)) → APPE_IN_GGA(X2, X3, X4)

The TRS R consists of the following rules:

appcB_in_ga(X1, X1) → appcB_out_ga(X1, X1)
appcC_in_aaag([], X1, X2, .(X1, X2)) → appcC_out_aaag([], X1, X2, .(X1, X2))
appcC_in_aaag(.(X1, X2), X3, X4, .(X1, X5)) → U16_aaag(X1, X2, X3, X4, X5, appcC_in_aaag(X2, X3, X4, X5))
U16_aaag(X1, X2, X3, X4, X5, appcC_out_aaag(X2, X3, X4, X5)) → appcC_out_aaag(.(X1, X2), X3, X4, .(X1, X5))
appcD_in_ggga(X1, X2, X3, .(X1, X4)) → U18_ggga(X1, X2, X3, X4, appcE_in_gga(X2, X3, X4))
appcE_in_gga([], X1, X1) → appcE_out_gga([], X1, X1)
appcE_in_gga(.(X1, X2), X3, .(X1, X4)) → U17_gga(X1, X2, X3, X4, appcE_in_gga(X2, X3, X4))
U17_gga(X1, X2, X3, X4, appcE_out_gga(X2, X3, X4)) → appcE_out_gga(.(X1, X2), X3, .(X1, X4))
U18_ggga(X1, X2, X3, X4, appcE_out_gga(X2, X3, X4)) → appcD_out_ggga(X1, X2, X3, .(X1, X4))

The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
appcB_in_ga(x1, x2)  =  appcB_in_ga(x1)
appcB_out_ga(x1, x2)  =  appcB_out_ga(x1, x2)
appcC_in_aaag(x1, x2, x3, x4)  =  appcC_in_aaag(x4)
appcC_out_aaag(x1, x2, x3, x4)  =  appcC_out_aaag(x1, x2, x3, x4)
U16_aaag(x1, x2, x3, x4, x5, x6)  =  U16_aaag(x1, x5, x6)
appcD_in_ggga(x1, x2, x3, x4)  =  appcD_in_ggga(x1, x2, x3)
U18_ggga(x1, x2, x3, x4, x5)  =  U18_ggga(x1, x2, x3, x5)
appcE_in_gga(x1, x2, x3)  =  appcE_in_gga(x1, x2)
[]  =  []
appcE_out_gga(x1, x2, x3)  =  appcE_out_gga(x1, x2, x3)
U17_gga(x1, x2, x3, x4, x5)  =  U17_gga(x1, x2, x3, x5)
appcD_out_ggga(x1, x2, x3, x4)  =  appcD_out_ggga(x1, x2, x3, x4)
APPE_IN_GGA(x1, x2, x3)  =  APPE_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(8) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPE_IN_GGA(.(X1, X2), X3, .(X1, X4)) → APPE_IN_GGA(X2, X3, X4)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
APPE_IN_GGA(x1, x2, x3)  =  APPE_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(10) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APPE_IN_GGA(.(X1, X2), X3) → APPE_IN_GGA(X2, X3)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • APPE_IN_GGA(.(X1, X2), X3) → APPE_IN_GGA(X2, X3)
    The graph contains the following edges 1 > 1, 2 >= 2

(13) YES

(14) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPC_IN_AAAG(.(X1, X2), X3, X4, .(X1, X5)) → APPC_IN_AAAG(X2, X3, X4, X5)

The TRS R consists of the following rules:

appcB_in_ga(X1, X1) → appcB_out_ga(X1, X1)
appcC_in_aaag([], X1, X2, .(X1, X2)) → appcC_out_aaag([], X1, X2, .(X1, X2))
appcC_in_aaag(.(X1, X2), X3, X4, .(X1, X5)) → U16_aaag(X1, X2, X3, X4, X5, appcC_in_aaag(X2, X3, X4, X5))
U16_aaag(X1, X2, X3, X4, X5, appcC_out_aaag(X2, X3, X4, X5)) → appcC_out_aaag(.(X1, X2), X3, X4, .(X1, X5))
appcD_in_ggga(X1, X2, X3, .(X1, X4)) → U18_ggga(X1, X2, X3, X4, appcE_in_gga(X2, X3, X4))
appcE_in_gga([], X1, X1) → appcE_out_gga([], X1, X1)
appcE_in_gga(.(X1, X2), X3, .(X1, X4)) → U17_gga(X1, X2, X3, X4, appcE_in_gga(X2, X3, X4))
U17_gga(X1, X2, X3, X4, appcE_out_gga(X2, X3, X4)) → appcE_out_gga(.(X1, X2), X3, .(X1, X4))
U18_ggga(X1, X2, X3, X4, appcE_out_gga(X2, X3, X4)) → appcD_out_ggga(X1, X2, X3, .(X1, X4))

The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
appcB_in_ga(x1, x2)  =  appcB_in_ga(x1)
appcB_out_ga(x1, x2)  =  appcB_out_ga(x1, x2)
appcC_in_aaag(x1, x2, x3, x4)  =  appcC_in_aaag(x4)
appcC_out_aaag(x1, x2, x3, x4)  =  appcC_out_aaag(x1, x2, x3, x4)
U16_aaag(x1, x2, x3, x4, x5, x6)  =  U16_aaag(x1, x5, x6)
appcD_in_ggga(x1, x2, x3, x4)  =  appcD_in_ggga(x1, x2, x3)
U18_ggga(x1, x2, x3, x4, x5)  =  U18_ggga(x1, x2, x3, x5)
appcE_in_gga(x1, x2, x3)  =  appcE_in_gga(x1, x2)
[]  =  []
appcE_out_gga(x1, x2, x3)  =  appcE_out_gga(x1, x2, x3)
U17_gga(x1, x2, x3, x4, x5)  =  U17_gga(x1, x2, x3, x5)
appcD_out_ggga(x1, x2, x3, x4)  =  appcD_out_ggga(x1, x2, x3, x4)
APPC_IN_AAAG(x1, x2, x3, x4)  =  APPC_IN_AAAG(x4)

We have to consider all (P,R,Pi)-chains

(15) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPC_IN_AAAG(.(X1, X2), X3, X4, .(X1, X5)) → APPC_IN_AAAG(X2, X3, X4, X5)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
APPC_IN_AAAG(x1, x2, x3, x4)  =  APPC_IN_AAAG(x4)

We have to consider all (P,R,Pi)-chains

(17) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APPC_IN_AAAG(.(X1, X5)) → APPC_IN_AAAG(X5)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(19) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • APPC_IN_AAAG(.(X1, X5)) → APPC_IN_AAAG(X5)
    The graph contains the following edges 1 > 1

(20) YES

(21) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U3_GA(X1, X2, X3, appcB_out_ga(X2, X4)) → PERMA_IN_GA(X4, X3)
PERMA_IN_GA(.(X1, X2), .(X1, X3)) → U3_GA(X1, X2, X3, appcB_in_ga(X2, X4))
PERMA_IN_GA(.(X1, X2), .(X3, X4)) → U6_GA(X1, X2, X3, X4, appcC_in_aaag(X5, X3, X6, X2))
U6_GA(X1, X2, X3, X4, appcC_out_aaag(X5, X3, X6, X2)) → U8_GA(X1, X2, X3, X4, appcD_in_ggga(X1, X5, X6, X7))
U8_GA(X1, X2, X3, X4, appcD_out_ggga(X1, X5, X6, X7)) → PERMA_IN_GA(X7, X4)

The TRS R consists of the following rules:

appcB_in_ga(X1, X1) → appcB_out_ga(X1, X1)
appcC_in_aaag([], X1, X2, .(X1, X2)) → appcC_out_aaag([], X1, X2, .(X1, X2))
appcC_in_aaag(.(X1, X2), X3, X4, .(X1, X5)) → U16_aaag(X1, X2, X3, X4, X5, appcC_in_aaag(X2, X3, X4, X5))
U16_aaag(X1, X2, X3, X4, X5, appcC_out_aaag(X2, X3, X4, X5)) → appcC_out_aaag(.(X1, X2), X3, X4, .(X1, X5))
appcD_in_ggga(X1, X2, X3, .(X1, X4)) → U18_ggga(X1, X2, X3, X4, appcE_in_gga(X2, X3, X4))
appcE_in_gga([], X1, X1) → appcE_out_gga([], X1, X1)
appcE_in_gga(.(X1, X2), X3, .(X1, X4)) → U17_gga(X1, X2, X3, X4, appcE_in_gga(X2, X3, X4))
U17_gga(X1, X2, X3, X4, appcE_out_gga(X2, X3, X4)) → appcE_out_gga(.(X1, X2), X3, .(X1, X4))
U18_ggga(X1, X2, X3, X4, appcE_out_gga(X2, X3, X4)) → appcD_out_ggga(X1, X2, X3, .(X1, X4))

The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
appcB_in_ga(x1, x2)  =  appcB_in_ga(x1)
appcB_out_ga(x1, x2)  =  appcB_out_ga(x1, x2)
appcC_in_aaag(x1, x2, x3, x4)  =  appcC_in_aaag(x4)
appcC_out_aaag(x1, x2, x3, x4)  =  appcC_out_aaag(x1, x2, x3, x4)
U16_aaag(x1, x2, x3, x4, x5, x6)  =  U16_aaag(x1, x5, x6)
appcD_in_ggga(x1, x2, x3, x4)  =  appcD_in_ggga(x1, x2, x3)
U18_ggga(x1, x2, x3, x4, x5)  =  U18_ggga(x1, x2, x3, x5)
appcE_in_gga(x1, x2, x3)  =  appcE_in_gga(x1, x2)
[]  =  []
appcE_out_gga(x1, x2, x3)  =  appcE_out_gga(x1, x2, x3)
U17_gga(x1, x2, x3, x4, x5)  =  U17_gga(x1, x2, x3, x5)
appcD_out_ggga(x1, x2, x3, x4)  =  appcD_out_ggga(x1, x2, x3, x4)
PERMA_IN_GA(x1, x2)  =  PERMA_IN_GA(x1)
U3_GA(x1, x2, x3, x4)  =  U3_GA(x1, x2, x4)
U6_GA(x1, x2, x3, x4, x5)  =  U6_GA(x1, x2, x5)
U8_GA(x1, x2, x3, x4, x5)  =  U8_GA(x1, x2, x5)

We have to consider all (P,R,Pi)-chains

(22) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(23) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U3_GA(X1, X2, appcB_out_ga(X2, X4)) → PERMA_IN_GA(X4)
PERMA_IN_GA(.(X1, X2)) → U3_GA(X1, X2, appcB_in_ga(X2))
PERMA_IN_GA(.(X1, X2)) → U6_GA(X1, X2, appcC_in_aaag(X2))
U6_GA(X1, X2, appcC_out_aaag(X5, X3, X6, X2)) → U8_GA(X1, X2, appcD_in_ggga(X1, X5, X6))
U8_GA(X1, X2, appcD_out_ggga(X1, X5, X6, X7)) → PERMA_IN_GA(X7)

The TRS R consists of the following rules:

appcB_in_ga(X1) → appcB_out_ga(X1, X1)
appcC_in_aaag(.(X1, X2)) → appcC_out_aaag([], X1, X2, .(X1, X2))
appcC_in_aaag(.(X1, X5)) → U16_aaag(X1, X5, appcC_in_aaag(X5))
U16_aaag(X1, X5, appcC_out_aaag(X2, X3, X4, X5)) → appcC_out_aaag(.(X1, X2), X3, X4, .(X1, X5))
appcD_in_ggga(X1, X2, X3) → U18_ggga(X1, X2, X3, appcE_in_gga(X2, X3))
appcE_in_gga([], X1) → appcE_out_gga([], X1, X1)
appcE_in_gga(.(X1, X2), X3) → U17_gga(X1, X2, X3, appcE_in_gga(X2, X3))
U17_gga(X1, X2, X3, appcE_out_gga(X2, X3, X4)) → appcE_out_gga(.(X1, X2), X3, .(X1, X4))
U18_ggga(X1, X2, X3, appcE_out_gga(X2, X3, X4)) → appcD_out_ggga(X1, X2, X3, .(X1, X4))

The set Q consists of the following terms:

appcB_in_ga(x0)
appcC_in_aaag(x0)
U16_aaag(x0, x1, x2)
appcD_in_ggga(x0, x1, x2)
appcE_in_gga(x0, x1)
U17_gga(x0, x1, x2, x3)
U18_ggga(x0, x1, x2, x3)

We have to consider all (P,Q,R)-chains.

(24) Rewriting (EQUIVALENT transformation)

By rewriting [LPAR04] the rule PERMA_IN_GA(.(X1, X2)) → U3_GA(X1, X2, appcB_in_ga(X2)) at position [2] we obtained the following new rules [LPAR04]:

PERMA_IN_GA(.(X1, X2)) → U3_GA(X1, X2, appcB_out_ga(X2, X2))

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U3_GA(X1, X2, appcB_out_ga(X2, X4)) → PERMA_IN_GA(X4)
PERMA_IN_GA(.(X1, X2)) → U6_GA(X1, X2, appcC_in_aaag(X2))
U6_GA(X1, X2, appcC_out_aaag(X5, X3, X6, X2)) → U8_GA(X1, X2, appcD_in_ggga(X1, X5, X6))
U8_GA(X1, X2, appcD_out_ggga(X1, X5, X6, X7)) → PERMA_IN_GA(X7)
PERMA_IN_GA(.(X1, X2)) → U3_GA(X1, X2, appcB_out_ga(X2, X2))

The TRS R consists of the following rules:

appcB_in_ga(X1) → appcB_out_ga(X1, X1)
appcC_in_aaag(.(X1, X2)) → appcC_out_aaag([], X1, X2, .(X1, X2))
appcC_in_aaag(.(X1, X5)) → U16_aaag(X1, X5, appcC_in_aaag(X5))
U16_aaag(X1, X5, appcC_out_aaag(X2, X3, X4, X5)) → appcC_out_aaag(.(X1, X2), X3, X4, .(X1, X5))
appcD_in_ggga(X1, X2, X3) → U18_ggga(X1, X2, X3, appcE_in_gga(X2, X3))
appcE_in_gga([], X1) → appcE_out_gga([], X1, X1)
appcE_in_gga(.(X1, X2), X3) → U17_gga(X1, X2, X3, appcE_in_gga(X2, X3))
U17_gga(X1, X2, X3, appcE_out_gga(X2, X3, X4)) → appcE_out_gga(.(X1, X2), X3, .(X1, X4))
U18_ggga(X1, X2, X3, appcE_out_gga(X2, X3, X4)) → appcD_out_ggga(X1, X2, X3, .(X1, X4))

The set Q consists of the following terms:

appcB_in_ga(x0)
appcC_in_aaag(x0)
U16_aaag(x0, x1, x2)
appcD_in_ggga(x0, x1, x2)
appcE_in_gga(x0, x1)
U17_gga(x0, x1, x2, x3)
U18_ggga(x0, x1, x2, x3)

We have to consider all (P,Q,R)-chains.

(26) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U3_GA(X1, X2, appcB_out_ga(X2, X4)) → PERMA_IN_GA(X4)
PERMA_IN_GA(.(X1, X2)) → U6_GA(X1, X2, appcC_in_aaag(X2))
U6_GA(X1, X2, appcC_out_aaag(X5, X3, X6, X2)) → U8_GA(X1, X2, appcD_in_ggga(X1, X5, X6))
U8_GA(X1, X2, appcD_out_ggga(X1, X5, X6, X7)) → PERMA_IN_GA(X7)
PERMA_IN_GA(.(X1, X2)) → U3_GA(X1, X2, appcB_out_ga(X2, X2))

The TRS R consists of the following rules:

appcD_in_ggga(X1, X2, X3) → U18_ggga(X1, X2, X3, appcE_in_gga(X2, X3))
appcE_in_gga([], X1) → appcE_out_gga([], X1, X1)
appcE_in_gga(.(X1, X2), X3) → U17_gga(X1, X2, X3, appcE_in_gga(X2, X3))
U18_ggga(X1, X2, X3, appcE_out_gga(X2, X3, X4)) → appcD_out_ggga(X1, X2, X3, .(X1, X4))
U17_gga(X1, X2, X3, appcE_out_gga(X2, X3, X4)) → appcE_out_gga(.(X1, X2), X3, .(X1, X4))
appcC_in_aaag(.(X1, X2)) → appcC_out_aaag([], X1, X2, .(X1, X2))
appcC_in_aaag(.(X1, X5)) → U16_aaag(X1, X5, appcC_in_aaag(X5))
U16_aaag(X1, X5, appcC_out_aaag(X2, X3, X4, X5)) → appcC_out_aaag(.(X1, X2), X3, X4, .(X1, X5))

The set Q consists of the following terms:

appcB_in_ga(x0)
appcC_in_aaag(x0)
U16_aaag(x0, x1, x2)
appcD_in_ggga(x0, x1, x2)
appcE_in_gga(x0, x1)
U17_gga(x0, x1, x2, x3)
U18_ggga(x0, x1, x2, x3)

We have to consider all (P,Q,R)-chains.

(28) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

appcB_in_ga(x0)

(29) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U3_GA(X1, X2, appcB_out_ga(X2, X4)) → PERMA_IN_GA(X4)
PERMA_IN_GA(.(X1, X2)) → U6_GA(X1, X2, appcC_in_aaag(X2))
U6_GA(X1, X2, appcC_out_aaag(X5, X3, X6, X2)) → U8_GA(X1, X2, appcD_in_ggga(X1, X5, X6))
U8_GA(X1, X2, appcD_out_ggga(X1, X5, X6, X7)) → PERMA_IN_GA(X7)
PERMA_IN_GA(.(X1, X2)) → U3_GA(X1, X2, appcB_out_ga(X2, X2))

The TRS R consists of the following rules:

appcD_in_ggga(X1, X2, X3) → U18_ggga(X1, X2, X3, appcE_in_gga(X2, X3))
appcE_in_gga([], X1) → appcE_out_gga([], X1, X1)
appcE_in_gga(.(X1, X2), X3) → U17_gga(X1, X2, X3, appcE_in_gga(X2, X3))
U18_ggga(X1, X2, X3, appcE_out_gga(X2, X3, X4)) → appcD_out_ggga(X1, X2, X3, .(X1, X4))
U17_gga(X1, X2, X3, appcE_out_gga(X2, X3, X4)) → appcE_out_gga(.(X1, X2), X3, .(X1, X4))
appcC_in_aaag(.(X1, X2)) → appcC_out_aaag([], X1, X2, .(X1, X2))
appcC_in_aaag(.(X1, X5)) → U16_aaag(X1, X5, appcC_in_aaag(X5))
U16_aaag(X1, X5, appcC_out_aaag(X2, X3, X4, X5)) → appcC_out_aaag(.(X1, X2), X3, X4, .(X1, X5))

The set Q consists of the following terms:

appcC_in_aaag(x0)
U16_aaag(x0, x1, x2)
appcD_in_ggga(x0, x1, x2)
appcE_in_gga(x0, x1)
U17_gga(x0, x1, x2, x3)
U18_ggga(x0, x1, x2, x3)

We have to consider all (P,Q,R)-chains.

(30) Rewriting (EQUIVALENT transformation)

By rewriting [LPAR04] the rule U6_GA(X1, X2, appcC_out_aaag(X5, X3, X6, X2)) → U8_GA(X1, X2, appcD_in_ggga(X1, X5, X6)) at position [2] we obtained the following new rules [LPAR04]:

U6_GA(X1, X2, appcC_out_aaag(X5, X3, X6, X2)) → U8_GA(X1, X2, U18_ggga(X1, X5, X6, appcE_in_gga(X5, X6)))

(31) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U3_GA(X1, X2, appcB_out_ga(X2, X4)) → PERMA_IN_GA(X4)
PERMA_IN_GA(.(X1, X2)) → U6_GA(X1, X2, appcC_in_aaag(X2))
U8_GA(X1, X2, appcD_out_ggga(X1, X5, X6, X7)) → PERMA_IN_GA(X7)
PERMA_IN_GA(.(X1, X2)) → U3_GA(X1, X2, appcB_out_ga(X2, X2))
U6_GA(X1, X2, appcC_out_aaag(X5, X3, X6, X2)) → U8_GA(X1, X2, U18_ggga(X1, X5, X6, appcE_in_gga(X5, X6)))

The TRS R consists of the following rules:

appcD_in_ggga(X1, X2, X3) → U18_ggga(X1, X2, X3, appcE_in_gga(X2, X3))
appcE_in_gga([], X1) → appcE_out_gga([], X1, X1)
appcE_in_gga(.(X1, X2), X3) → U17_gga(X1, X2, X3, appcE_in_gga(X2, X3))
U18_ggga(X1, X2, X3, appcE_out_gga(X2, X3, X4)) → appcD_out_ggga(X1, X2, X3, .(X1, X4))
U17_gga(X1, X2, X3, appcE_out_gga(X2, X3, X4)) → appcE_out_gga(.(X1, X2), X3, .(X1, X4))
appcC_in_aaag(.(X1, X2)) → appcC_out_aaag([], X1, X2, .(X1, X2))
appcC_in_aaag(.(X1, X5)) → U16_aaag(X1, X5, appcC_in_aaag(X5))
U16_aaag(X1, X5, appcC_out_aaag(X2, X3, X4, X5)) → appcC_out_aaag(.(X1, X2), X3, X4, .(X1, X5))

The set Q consists of the following terms:

appcC_in_aaag(x0)
U16_aaag(x0, x1, x2)
appcD_in_ggga(x0, x1, x2)
appcE_in_gga(x0, x1)
U17_gga(x0, x1, x2, x3)
U18_ggga(x0, x1, x2, x3)

We have to consider all (P,Q,R)-chains.

(32) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(33) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U3_GA(X1, X2, appcB_out_ga(X2, X4)) → PERMA_IN_GA(X4)
PERMA_IN_GA(.(X1, X2)) → U6_GA(X1, X2, appcC_in_aaag(X2))
U8_GA(X1, X2, appcD_out_ggga(X1, X5, X6, X7)) → PERMA_IN_GA(X7)
PERMA_IN_GA(.(X1, X2)) → U3_GA(X1, X2, appcB_out_ga(X2, X2))
U6_GA(X1, X2, appcC_out_aaag(X5, X3, X6, X2)) → U8_GA(X1, X2, U18_ggga(X1, X5, X6, appcE_in_gga(X5, X6)))

The TRS R consists of the following rules:

appcE_in_gga([], X1) → appcE_out_gga([], X1, X1)
appcE_in_gga(.(X1, X2), X3) → U17_gga(X1, X2, X3, appcE_in_gga(X2, X3))
U18_ggga(X1, X2, X3, appcE_out_gga(X2, X3, X4)) → appcD_out_ggga(X1, X2, X3, .(X1, X4))
U17_gga(X1, X2, X3, appcE_out_gga(X2, X3, X4)) → appcE_out_gga(.(X1, X2), X3, .(X1, X4))
appcC_in_aaag(.(X1, X2)) → appcC_out_aaag([], X1, X2, .(X1, X2))
appcC_in_aaag(.(X1, X5)) → U16_aaag(X1, X5, appcC_in_aaag(X5))
U16_aaag(X1, X5, appcC_out_aaag(X2, X3, X4, X5)) → appcC_out_aaag(.(X1, X2), X3, X4, .(X1, X5))

The set Q consists of the following terms:

appcC_in_aaag(x0)
U16_aaag(x0, x1, x2)
appcD_in_ggga(x0, x1, x2)
appcE_in_gga(x0, x1)
U17_gga(x0, x1, x2, x3)
U18_ggga(x0, x1, x2, x3)

We have to consider all (P,Q,R)-chains.

(34) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

appcD_in_ggga(x0, x1, x2)

(35) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U3_GA(X1, X2, appcB_out_ga(X2, X4)) → PERMA_IN_GA(X4)
PERMA_IN_GA(.(X1, X2)) → U6_GA(X1, X2, appcC_in_aaag(X2))
U8_GA(X1, X2, appcD_out_ggga(X1, X5, X6, X7)) → PERMA_IN_GA(X7)
PERMA_IN_GA(.(X1, X2)) → U3_GA(X1, X2, appcB_out_ga(X2, X2))
U6_GA(X1, X2, appcC_out_aaag(X5, X3, X6, X2)) → U8_GA(X1, X2, U18_ggga(X1, X5, X6, appcE_in_gga(X5, X6)))

The TRS R consists of the following rules:

appcE_in_gga([], X1) → appcE_out_gga([], X1, X1)
appcE_in_gga(.(X1, X2), X3) → U17_gga(X1, X2, X3, appcE_in_gga(X2, X3))
U18_ggga(X1, X2, X3, appcE_out_gga(X2, X3, X4)) → appcD_out_ggga(X1, X2, X3, .(X1, X4))
U17_gga(X1, X2, X3, appcE_out_gga(X2, X3, X4)) → appcE_out_gga(.(X1, X2), X3, .(X1, X4))
appcC_in_aaag(.(X1, X2)) → appcC_out_aaag([], X1, X2, .(X1, X2))
appcC_in_aaag(.(X1, X5)) → U16_aaag(X1, X5, appcC_in_aaag(X5))
U16_aaag(X1, X5, appcC_out_aaag(X2, X3, X4, X5)) → appcC_out_aaag(.(X1, X2), X3, X4, .(X1, X5))

The set Q consists of the following terms:

appcC_in_aaag(x0)
U16_aaag(x0, x1, x2)
appcE_in_gga(x0, x1)
U17_gga(x0, x1, x2, x3)
U18_ggga(x0, x1, x2, x3)

We have to consider all (P,Q,R)-chains.

(36) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U3_GA(X1, X2, appcB_out_ga(X2, X4)) → PERMA_IN_GA(X4) we obtained the following new rules [LPAR04]:

U3_GA(z0, z1, appcB_out_ga(z1, z1)) → PERMA_IN_GA(z1)

(37) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PERMA_IN_GA(.(X1, X2)) → U6_GA(X1, X2, appcC_in_aaag(X2))
U8_GA(X1, X2, appcD_out_ggga(X1, X5, X6, X7)) → PERMA_IN_GA(X7)
PERMA_IN_GA(.(X1, X2)) → U3_GA(X1, X2, appcB_out_ga(X2, X2))
U6_GA(X1, X2, appcC_out_aaag(X5, X3, X6, X2)) → U8_GA(X1, X2, U18_ggga(X1, X5, X6, appcE_in_gga(X5, X6)))
U3_GA(z0, z1, appcB_out_ga(z1, z1)) → PERMA_IN_GA(z1)

The TRS R consists of the following rules:

appcE_in_gga([], X1) → appcE_out_gga([], X1, X1)
appcE_in_gga(.(X1, X2), X3) → U17_gga(X1, X2, X3, appcE_in_gga(X2, X3))
U18_ggga(X1, X2, X3, appcE_out_gga(X2, X3, X4)) → appcD_out_ggga(X1, X2, X3, .(X1, X4))
U17_gga(X1, X2, X3, appcE_out_gga(X2, X3, X4)) → appcE_out_gga(.(X1, X2), X3, .(X1, X4))
appcC_in_aaag(.(X1, X2)) → appcC_out_aaag([], X1, X2, .(X1, X2))
appcC_in_aaag(.(X1, X5)) → U16_aaag(X1, X5, appcC_in_aaag(X5))
U16_aaag(X1, X5, appcC_out_aaag(X2, X3, X4, X5)) → appcC_out_aaag(.(X1, X2), X3, X4, .(X1, X5))

The set Q consists of the following terms:

appcC_in_aaag(x0)
U16_aaag(x0, x1, x2)
appcE_in_gga(x0, x1)
U17_gga(x0, x1, x2, x3)
U18_ggga(x0, x1, x2, x3)

We have to consider all (P,Q,R)-chains.

(38) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


U6_GA(X1, X2, appcC_out_aaag(X5, X3, X6, X2)) → U8_GA(X1, X2, U18_ggga(X1, X5, X6, appcE_in_gga(X5, X6)))
U3_GA(z0, z1, appcB_out_ga(z1, z1)) → PERMA_IN_GA(z1)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(.(x1, x2)) = 1 + x2   
POL(PERMA_IN_GA(x1)) = x1   
POL(U16_aaag(x1, x2, x3)) = 1 + x3   
POL(U17_gga(x1, x2, x3, x4)) = 1 + x4   
POL(U18_ggga(x1, x2, x3, x4)) = x4   
POL(U3_GA(x1, x2, x3)) = x2 + x3   
POL(U6_GA(x1, x2, x3)) = 1 + x3   
POL(U8_GA(x1, x2, x3)) = x3   
POL([]) = 0   
POL(appcB_out_ga(x1, x2)) = 1   
POL(appcC_in_aaag(x1)) = x1   
POL(appcC_out_aaag(x1, x2, x3, x4)) = 1 + x1 + x3   
POL(appcD_out_ggga(x1, x2, x3, x4)) = x4   
POL(appcE_in_gga(x1, x2)) = 1 + x1 + x2   
POL(appcE_out_gga(x1, x2, x3)) = 1 + x3   

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

appcC_in_aaag(.(X1, X2)) → appcC_out_aaag([], X1, X2, .(X1, X2))
appcC_in_aaag(.(X1, X5)) → U16_aaag(X1, X5, appcC_in_aaag(X5))
appcE_in_gga([], X1) → appcE_out_gga([], X1, X1)
appcE_in_gga(.(X1, X2), X3) → U17_gga(X1, X2, X3, appcE_in_gga(X2, X3))
U18_ggga(X1, X2, X3, appcE_out_gga(X2, X3, X4)) → appcD_out_ggga(X1, X2, X3, .(X1, X4))
U17_gga(X1, X2, X3, appcE_out_gga(X2, X3, X4)) → appcE_out_gga(.(X1, X2), X3, .(X1, X4))
U16_aaag(X1, X5, appcC_out_aaag(X2, X3, X4, X5)) → appcC_out_aaag(.(X1, X2), X3, X4, .(X1, X5))

(39) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PERMA_IN_GA(.(X1, X2)) → U6_GA(X1, X2, appcC_in_aaag(X2))
U8_GA(X1, X2, appcD_out_ggga(X1, X5, X6, X7)) → PERMA_IN_GA(X7)
PERMA_IN_GA(.(X1, X2)) → U3_GA(X1, X2, appcB_out_ga(X2, X2))

The TRS R consists of the following rules:

appcE_in_gga([], X1) → appcE_out_gga([], X1, X1)
appcE_in_gga(.(X1, X2), X3) → U17_gga(X1, X2, X3, appcE_in_gga(X2, X3))
U18_ggga(X1, X2, X3, appcE_out_gga(X2, X3, X4)) → appcD_out_ggga(X1, X2, X3, .(X1, X4))
U17_gga(X1, X2, X3, appcE_out_gga(X2, X3, X4)) → appcE_out_gga(.(X1, X2), X3, .(X1, X4))
appcC_in_aaag(.(X1, X2)) → appcC_out_aaag([], X1, X2, .(X1, X2))
appcC_in_aaag(.(X1, X5)) → U16_aaag(X1, X5, appcC_in_aaag(X5))
U16_aaag(X1, X5, appcC_out_aaag(X2, X3, X4, X5)) → appcC_out_aaag(.(X1, X2), X3, X4, .(X1, X5))

The set Q consists of the following terms:

appcC_in_aaag(x0)
U16_aaag(x0, x1, x2)
appcE_in_gga(x0, x1)
U17_gga(x0, x1, x2, x3)
U18_ggga(x0, x1, x2, x3)

We have to consider all (P,Q,R)-chains.

(40) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 3 less nodes.

(41) TRUE